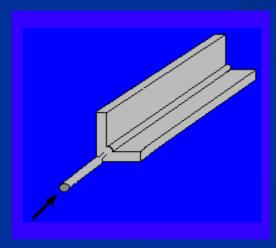
Gas Assist and Microcellular (MuCell®) Molding Process

Vishu Shah Consultek



See Every Aspect of Plastics Processing! Tuesday–Thursday • January 6–8, 2004

Anaheim Convention Center • Anaheim, California

What is Gas Assist Injection Molding?

Gas Assist injection molding is a process enhancement to conventional injection molding, involving the injection of high pressure nitrogen gas into the resin melt stream immediately after injection of the resin. The intent is not to cause mixture of nitrogen and resin, but for the nitrogen to displace resin in gas channels and thicker sections of the molded product. The process is a high speed, low pressure injection method, enabled by short shooting the tool, and completing the resin filling phase by nitrogen gas, at a much lower pressures as compared to convention injection molding.

Advantages of Gas assist Molding

Cycle time reduction and lower production costs

- Lower clamp tonnage
- > Lower Injection pressures
- > Faster cycle due to hollow sections vs. solid section
- ≻

Design Freedom

- > Large ribs possible and permissible
- > Long flow lengths without multiple drops

Quality Improvement

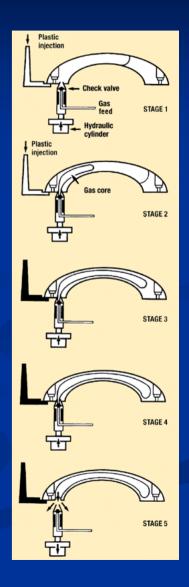
- > Lower stress within the part
- > Better dimensional stability and part to part size variations
- > Elimination of sink marks and warpage and voids
- Greater strength and rigidity
- Reduced knit lines (No multiple drops necessary)

Material savings through weight reduction

> Hollow parts

Simplification of Tooling

Elimination of lifters and undercuts



Disadvantages or Limitations

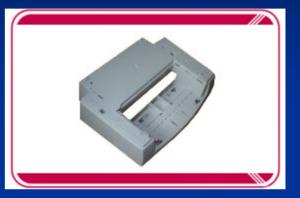
- Race Tracking of Polymer Through Gas Channels
- **Fingering** (The penetration of the gas from gas channel into the thinner sections of the part)
- Gas Blow-Through
- No fully being able to Control where the Gas goes
 More Expensive than Standard Injection Molding

Gas Assist Process Basics

- Short-shot molding. A process in which certain features such as ribs or thick walls are cored out with gas in an otherwise solid molded part. This process gets its name from the method of only partially filling the cavity during the polymer injection phase of the cycle and then relying on the gas injection phase to fill out the remainder of the cavity with the material the gas bubble is displacing from the core.
- Full-shot molding. A process in which the mold is completely filled during the plastic injection phase. Gas is introduced into the cavity in this case only to provide local packing and to compensate for the effects of polymer volumetric shrinkage as the part cools.
- Hollow molding. A process in which all or nearly all of the part is cored out by the gas, in effect making the part itself the gas channel. This is the method most often used to make parts with large cross sections such as rods, tubes, and handles.

Applications: Automotive

Wing Mirror Housing ABS/PC Without gas 181 grms With gas 154 grms Saving 15%



Interior Handle Talc Filled PP Without gas 73 grms With gas 52 grms Saving 29 %

Applications: TV, Computers & Office Machines

21" TV cabinet HIPS

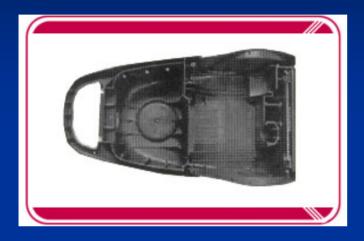
Cabinet Base Molding HIPS 5% reduction in cycle time

No sink marks or distortion

Copier Cover ABS

Without gas 487g With gas 460g Saving 5.6%

Sinks & Warpage elimination


Applications: Furniture

Chair Arm Rest PP

Without gas 1414g With gas 919g Saving 35%

Applications: Appliances

Vacuum Cleaner Base HIPS

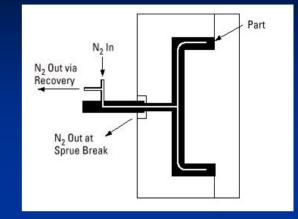
Total cost saving \$1.50 per piece Dimensional stability improvement Surface finish improvement - eliminated sink marks Inclusion of thicker internal rib sections with no sink marks

Applications: Miscellaneous

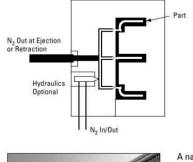
Baby Carriage Handle PP

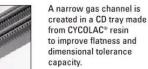
Without gas 524 grms With gas 414 grms Saving 31%

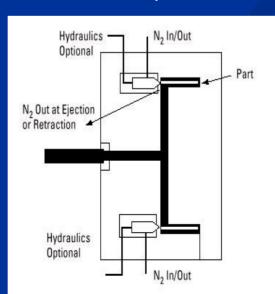
Hollow Bathroom Handrail


Typical Gas Assist Process Cycle

- 1. Mold closes and reaches clamp tonnage
- 2. Resin is Injected into cavity as short shot
- 3. Gas is introduced in to the hot melt
- 4. Gas pressure maintained during cooling cycle
- 5. Gas pressure is released
- 6. Mold opens and part ejects


Gas Injection Methods


 <u>Injection through Nozzle</u>
 Pro: Minimum tool Modification
 Con: Limited control of gas placement and process variables


Injection through Gas Pins

Sprue or Runner

Cavity

Pro: Gas Placement where needed Con: Additional tooling cost

Gas Delivery System

Nitrogen Bottles

Nitrogen Generators

Central Nitrogen Systems

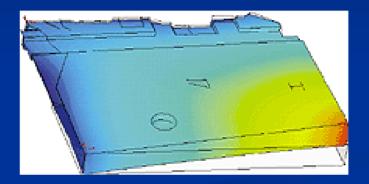
Molding Machine Requirements

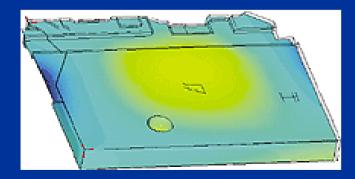
No special requirements..... No special adaptations or modifications.....

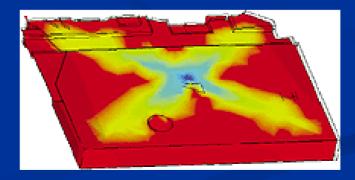
Works well with smaller size machines also...

Stand alone systems available

Integrated systems from IMM manufacturers


Part Design for Gas Assist


- Sizing of gas channels
- Gas channel layout
- Location of gas injection point(s)


Part design: Moldflow® Simulation

Moldflow Plastics InsightTM 3.0

Tooling Considerations

New Tooling

Injecting Through nozzle

Sprue gate preferred Gate size and location is critical Cannot use hot runner system

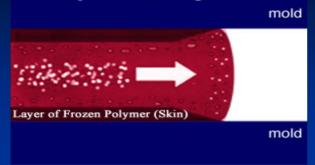
Injecting in Runner/part

Hot runner ok... Gas pin location very critical

Converting Existing tooling

Conventional Tooling

Same considerations as new tooling


Hot Runner Tooling

A) Inject gas through pinsB) Eliminate hot runner

Venting, Cooling Shrinkage......No special considerations

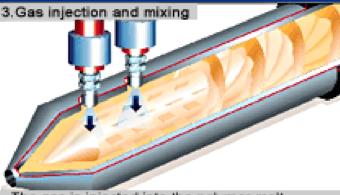
Gas Counter Pressure & External Gas Molding

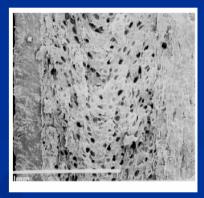
Counterpressure Filling

Gas Counterpressure

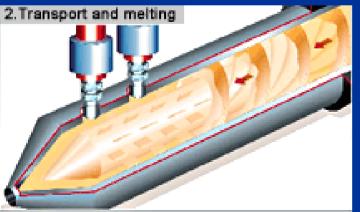
ConMet uses a process that includes a pressurized mold cavity that is injected with nitrogen gas to counteract the expansion of the gas within the melt. As the counterpressure is released, the gas bubbles that would conventionally break through the surface are trapped inside, creating a smooth skin.

During the conventional structural foam molding process, the melt enters the unpressurized mold and immediately begins to foam, generating bubbles of gas that break through the surface and create swirl marks. While offering you all the advantages of low-pressure foam with low-clamp tonnage requirements, gas counterpressure eliminates surface swirl marks while forming a tougher outer skin.

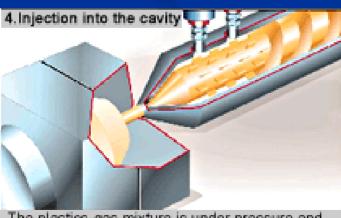

Using this gas counterpressure process, your product can provide longer-lasting physical properties: flexural modulus, impact resistance, and tensile strength. The smooth surface also means that very little, if any, painting is required, giving you lower finishing costs.


Mucell® Microcellular Technology

 MuCell is the trade name of microcellular polymeric foam produced by Trexel's proprietary MuCell microcellular foam process. The MuCell process uses supercritical fluids (SCFs) of atmospheric gases--not chemical blowing agents to create evenly distributed and uniformly sized microscopic cells throughout a thermoplastic polymer



The rotating screw draws in the granulate from the material hopper and transports it in the direction of the screw tip.



The gas is injected into the polymer melt and mixed.

The plastic is platified and homogenized by heating while being transported.

The plastics-gas mixture is under pressure and is injected into the injection moulding tool, where it forms small, finely distributed gas bubbles. Micrograph showing average cell size of 10 microns (.0004 Inches)

Mucell® Vs. Gas Assist

Surface Appearance Poor

 Surface same as conventionally molded parts

- Microcellular Foam Process (gas is used to produce microcellular structure)
- Gas introduced in the barrel
- Gas assist process (gas is used to assist filling and packing)
- Gas introduced in the nozzle or in Sprue/runner/part

Effects of the MuCell® Molding Process

Molding MuCell versus Solid

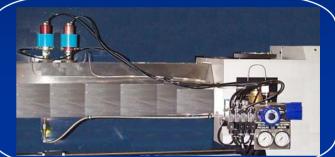
- Shot size is reduced
- Final mold fill with cell growth
- Little or no Hold Time or Pressure
 - More uniform shrinkage
 - Reduced molded-in stress
 - Lower clamp tonnage
 - No need to size runner/gates for pack pressure

Applications

Weight reduced 10% Cycle time - 20% - 30% Machine size reduction up to 50%

HP Printer Chassis Cycle time - 27% Weight reduced -8.5%

Cycolac CRT 3370 ABS - glass filled In-Mold decoration



Conventional

MuCell Injection Molding Machine

MuCell Interface Kit

Runs in both solid and

MuCell molding

SCF Delivery System

MuCell[®] Modular Upgrade

A simple, fast and low cost solution to upgrade existing molding machines to the MuCell Process

Injection Module and MuCell Interface Kit

Series II SCF System

The MuCell Modular Upgrade converts a standard electric or hydraulic injection molding machine into a fully capable MuCell molding machine. The upgrade consists of two distinct modules: a new injection module that is designed as a drop-in replacement of the existing injection module, and the Series II SCF module.

Equipment Manufacturers

Table 2. Gas-assist injection molding licensing information⁽¹⁾

	Manufacturing license fee	"Gas injection" equipment	Additional costs "royalties"
Airmold (Battenfeld) ⁽⁶⁾	None	Single Machine, Single Injection Point, Base Price \$110 000, Expandable ⁽⁷⁾	None
Cinpres ⁽⁵⁾	\$60,000	Single \$35,000, Multiple \$58 - 95,000	Based on: Material Usage or Tooling Fee or Flat Fee for Parts
Epcon	-	Single \$55,000 Multiple \$77,500	None
GAIN	Per mold \$1.5 -15,000/yr per facility \$25 - 250,000/yr ⁽²⁾	Single \$25 - 50,000 Multiple \$35 - 85,000	None
HELGA (Hettinga) ⁽³⁾	None	HELGA Package \$70 - 75,000	None
Johnson Controls Multinozzle/ Sequential Gas Assist ⁽⁴⁾	None	Integrated into machine controls \$30 -50,000	None
Nitrojection	\$25,000	\$45 - 85,000	None

Molders

APW
Preproduction plastics
Cambro

www.apw.com www.ppiplastics.com www.cambro.com

Where to find more information....

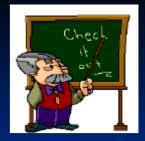
Books

- Gas Assist Injection Molding: Principles and Applications ۲ Edited by Jack Avery, GE Plastics
- Gas Assist Injection Molding ٠ Paul Dier and Richard Goralski
- Microcellular Processing \bullet Kevin Okamoto

Technical literature

- Injection Molding: Gas Assist Technology Guide
- Article External Gas Molding Squeez out sinks
- Article Microcellular Molding Takes off
- Innovative Injection Molding Techniques •
- Molding with Counterpressure
- Molders Perspective: Mucell Technology •
- New Methods Expand Roles of Gas Assist Molding ٠

www.hansergardner.com


www.cancombookstore.com

www.hansergardner.com

GE Plastics	www.geplastics.com		
http://www.plasticstech	nology.com/articles/200111fa3.html		
http://www.plasticstechr	nology.com/articles/200009fa1.html		
http://www.devicelink.com/mddi/archive/98/04/009.html			
http://www.caropresoassociates.com/paper3.html			
http://www.kaysun.com/ps/index.htm			
http://www.plasticstechn	ology.com/articles/200206cu1.html		

Education

Gas Assist for Injection Molding
 Penn State Erie Continuing Education <u>http://www</u>

http://www.pserie.psu.edu/cde/pt/pt.htm

Course Title: Gas Assist Part and Mold Design <u>http://www.lightspeedu.com/syllabus/gasassist.htm</u>

LightSpeed University online courses

Caropreso Associates, Chester MA Training Seminars <u>http://www.caropresoassociates.com/seminars.html</u>

Bauer Plastics Technology Group

http://www.bauerptg.com

Technical Seminars

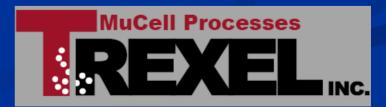
Assessment of Processing Capabilities Theory and Practical Applications of Gas Assist Molding Pros and Cons of Gas Assist Molding Implementation of Gas Assist Molding Designing for Gas Assist Molding

Trexel Mucell Process Seminars

http://www.trexel.com

Special thanks to.....

- GE Plastics
- Cinpres
- Gain Technologies
- Bauer



GAS Assist Process Movie